This page uses cookies. For details and possible settings refer to our Privacy Policy.
Continuing to use this page means accepting the processing of cookie files.

Accept (hide info)
POL ENG GER 中文(繁體) 中文(简体)

性能


Adaptive Vision软件之工具经受过高级优化,目标位确保其与所使用SSE或者AVX技术现代多核处理器的相容性。 下表中显示对机器视觉性能所进行的基准话分析法之结果。

对视觉软体所进行的基准化分析法

过滤器 Adaptive Vision Studio 4.12 其他产品 OpenCV 4.2
Image negation 0.030 ms 0.032 ms 0.025 ms
Add two images (pixel by pixel) 0.029 ms 0.047 ms 0.036 ms
Image difference (pixel by pixel) 0.036 ms 0.045 ms 0.030 ms
RGB to HSV conversion (3xUINT8) 0.127 ms 1.026 ms 0.129 ms
Gauss filter 3x3 0.031 ms 0.035 ms 0.037 ms
Gauss filter 5x5 0.033 ms 0.073 ms 0.052 ms
Gauss filter 21x21 (std-dev: 4.3) 0.311 ms 0.355 ms 0.240 ms
Mean filter 21x21 0.100 ms 0.102 ms 0.291 ms
Image erosion 3x3 0.030 ms 0.035 ms 0.050 ms
Image erosion 5x5 0.030 ms 0.036 ms 0.059 ms
Sobel gradient magnitude (sum) 0.032 ms 0.035 ms
Sobel gradient magnitude (hypot) 0.034 ms 0.040 ms
Threshold to region 0.043 ms 0.076 ms
Splitting region into blobs 0.119 ms 0.206 ms
Bilinear image resize 0.131 ms 0.108 ms 0.052 ms

上面的结果对应于640X480分辨率的八位图像,处理器为Intel Core i5 - 3.2 GHz。 为了消除测量错误之非随机部件,每一运算的重复数乘于10三十次,导致下面的重复序列:10、20、30、...、300。 接下来,直线拟合到了所接受的运行数。通过该方法,线移动表示与测量开始和中止的恒误差,同时线斜表示运行事件。 为了提升测量的精确性,测试过较大图像,测试结果后来被归一化。请注意,来自不同数据库的函数不一定会造成同样的输出数据。

SSE和多核优化

Adaptive Vision Studio的过滤器对SSE/AVX/NEON技术和多核处理器经受过优化。 捕获,通过上述功能所可能达到的加快因素很明显基于该运算符的规格。经受基于SSE优化后,简单的逐像素变换就达到内存带宽的限制。 同时,较复杂过滤器,比如高斯平滑过滤器的运行时间常常低于靠C++优化十倍。


CPU基准化分析法

下表表示不同处理器运行我们软件工具的性能多大(越高越好)。选择适合于您应用程序时,可以参考下表。

Benchmark category Overall result
Device description Executor Engine Image processing Image analysis Region processing Applications
Intel Atom D525
1.80GHz / 1MB cache / 2 cores / 4 GB RAM
54.9 32.7 41.1 61.7 53.1 48.7
Intel Core 2 Duo T6400
2.00GHz / 2MB cache / 2 cores / 3 GB RAM
54.9 79.4 87.1 108.2 105.4 87.0
Intel Atom E3845
1.91GHz / 2MB cache / 4 cores / 4 GB RAM
100.0 100.0 100.0 100.0 100.0 100.0
AMD FX-4100 Quad-Core
3.60 GHz / 8MB cache / 4 cores/ 8 GB RAM
112.3 213.4 164.8 218.7 174.6 176.7
AMD Athlon II X2 270
3.40 GHz / 2MB cache / 2 cores/ 8 GB RAM
311.6 136.8 171.6 210.0 212.0 208.4
Intel Core-i7 3612QM
2.10GHz / 6MB cache / 4 cores/ 4 GB RAM
427.8 534.6 303.6 295.9 352.6 382.9
Intel Core-i7 2600K
3.40GHz / 8MB cache / 4 cores/ 8 GB RAM
507.6 593.4 346.8 345.9 393.1 437.4
Intel Core-i5 3470
3.20GHz / 6MB cache / 4 cores/ 16 GB RAM
545.3 628.1 355.1 324.7 403.6 455.0
Intel Core-i5 3570K
3.40GHz / 6MB cache / 4 cores/ 8 GB RAM
554.6 645.5 359.0 360.4 416.5 467.2
Intel Core-i5 4460
3.20GHz / 6MB cache / 4 cores/ 16 GB RAM
611.6 667.6 366.6 356.9 421.3 484.8
Intel Core-i7 4800MQ
2.70GHz / 6MB cache / 4 cores/ 12 GB RAM
628.3 678.7 380.5 378.9 420.8 483.5
Intel Core-i7 6700HQ
2.60GHz / 6MB cache / 4 cores/ 16 GB RAM
641.8 710.0 365.9 366.8 416.3 500.2
Intel Core-i7 4800MQ
2.70GHz / 6MB cache / 4 cores/ 16 GB RAM
640.2 699.1 380.9 378.8 412.6 502.3
Intel Core-i5 6500
3.20GHz / 6MB cache / 4 cores/ 16 GB RAM
663.7 794.0 395.7 390.2 458.1 540.3
Intel Core-i5 7500
3.40GHz / 6MB cache / 4 cores/ 16 GB RAM
684.3 830.1 422.0 406.8 492.6 567.1
Intel Core-i7 4790K
4.00GHz / 8MB cache / 4 cores/ 16 GB RAM
798.2 887.5 474.7 461.1 550.1 634.3
AMD Ryzen 7 2700X
3.70GHz / 20MB cache / 8 cores/ 16 GB RAM
667.9 1407.1 535.9 439.0 419.6 693.9
Intel Core-i7 8700K
3.70GHz / 12MB cache / 6 cores/ 16 GB RAM
862.5 1364.7 587.8 491.3 594.3 780.1

较高值指的是较高性能。
该测试测量恒运算数的运行时间。结果被归一化。


回到顶部

Deep Learning Benchmark

下表表示执行本司深度学习工具时不同硬件配置的性能 (分数越高越好)。在为应用程序选择硬件时,可以将其用作参考。

Hardware configuration Deep Learning Network Overall result
CPU / RAM / GPU / Compute Capability/ NVIDIA Driver
Classify Object (CO) Detect Anomalies 2 (DA2) Detect Anomalies 1 Global (DA1G) Detect Anomalies 1 Local (DA1L) Detect Features (DF) Instance Segmentation (IS) Locate Points (LP)
Intel Core-i5 9400F 2,90GHz / 16 GB RAM
GeForce GT 730 2GB / 3.5 / 452.06
35.7 5.7 24.0 6.3 6.9 15.0 7.0 7.4
AMD Ryzen 7 2700X Eight-Core / 16 GB RAM
118.2 30.1 64.3 12.4 13.6 92.7 18.4 20.2
Intel Core-i5 7500 3,40GHz / 16 GB RAM
122.8 26.9 58.2 14.8 13.3 83.9 15.0 20.5
Intel Core-i7 9750H 2,60GHz / 16 GB RAM (Laptop)
58.9 26.6 59.1 18.8 13.6 88.3 16.3 22.6
Intel Core-i7 8700K 3,70GHz / 16 GB RAM
186.0 32.6 75.6 17.6 14.9 102.9 19.1 24.4
Intel Core-i5 9400F 2,90GHz / 16 GB RAM
164.3 34.9 82.6 22.2 18.9 105.3 21.6 29.1
Intel Core-i7 9750H 2,60GHz / 16 GB RAM
GeForce RTX 2060 6GB / 7.5 / 445.87 (Laptop)
68.5 135.1 108.5 94.8 85.4 96.5 69.2 96.5
AMD Ryzen 7 2700X Eight-Core / 16 GB RAM
GeForce GTX 1060 6GB / 6.1 / 452.06
102.2 99.1 92.8 102.8 99.5 97.8 100.0 99.6
Intel Core-i5 7500 3,40GHz / 16 GB RAM
GeForce GTX 1060 6GB / 6.1 / 445.87
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Intel Core-i7 8700K 3,70GHz / 16 GB RAM
GeForce GTX 1060 6GB / 6.1 / 452.06
101.6 103.9 90.0 101.0 100.5 96.0 105.8 100.5
Intel Core-i7 8700K 3,70GHz / 32 GB RAM
GeForce GTX 1070 8GB / 6.1 / 452.06
82.7 136.0 90.9 129.6 133.6 106.3 134.6 124.1
Intel Core-i5 7500 3,40GHz / 16 GB RAM
GeForce RTX 2060 6GB / 7.5 / 441.87
102.7 157.7 135.4 142.8 148.8 133.1 134.7 143.3
Intel Core-i5 7500 3,40GHz / 16 GB RAM
GeForce GTX 1080 8GB / 6.1 / 452.06
109.0 158.9 108.4 161.5 167.7 127.3 161.4 150.5
Intel Core-i5 9400F 2,90GHz / 16 GB RAM
GeForce RTX 2060 SUPER 8GB / 7.5 / 452.06
99.4 192.5 167.7 173.8 182.4 155.5 168.6 173.7

更高的总体结果代表更好的性能。 测量的是所选深度学习工具的执行时间。 结果被归一化。
回到顶部