This page uses cookies. For details and possible settings refer to our Privacy Policy.
Continuing to use this page means accepting the processing of cookie files.

Accept (hide info)
POL ENG GER 中文

Performance

The filters of Adaptive Vision Studio are highly optimized for modern multi-core processors with SSE2 technology. The table below shows results of a vision libraries performance benchmark.

Vision Libraries Benchmark

Filter Adaptive Vision Studio 4.10.5 Another product OpenCV 3.4.1
Image negation 0.032 ms 0.03 ms 0.032 ms
Add two images (pixel by pixel) 0.032 ms 0.04 ms 0.028 ms
Image difference (pixel by pixel) 0.031 ms 0.038 ms 0.026 ms
RGB to HSV conversion (3xUINT8) 0.554 ms 0.823 ms 0.562 ms
Gauss filter 3x3 0.032 ms 0.166 ms 0.064 ms
Gauss filter 5x5 0.036 ms 0.168 ms 0.115 ms
Gauss filter 21x21 (std-dev: 4.3) 0.51 ms 1.23 ms 1.979 ms
Mean filter 21x21 0.094 ms 0.092 ms 0.341 ms
Image erosion 3x3 0.032 ms 0.062 ms 0.032 ms
Image erosion 5x5 0.032 ms 0.064 ms 0.045 ms
Sobel gradient amplitude (sum) 0.064 ms 0.032 ms
Sobel gradient amplitude (hypot) 0.092 ms 0.035 ms
Threshold to region 0.015 ms 0.014 ms
Splitting region into blobs 0.024 ms 0.024 ms
Bilinear image resize 0.017 ms 0.165 ms 0.085 ms

The above results correspond to 640x480 resolution, 1xUINT8 on an Intel Core i5 - 3.2 GHz (4 cores) machine. To assure consistent cache conditions big images were used and the results were normalized.

SEE & Multi-Core Optimization

Filters of Adaptive Vision Studio are optimized for SSE technology and for multi-core processors. Speed-up factors that can be achieved with these techniques are however highly dependent on the particular operator. Simple pixel-by-pixel transforms after SSE-based optimizations already reach memory bandwidth limits. On the other hand, more complex filters such as Gauss smoothing can achieve even 10 times lower execution times than with C++ optimizations only.


CPU Benchmark

The below table demonstrates how well different processors perform when executing our software tools (higher is better). You can use it as a reference when choosing hardware for your application.

Benchmark category Overall result
Device description Executor Engine Image processing Image analysis Region processing Applications
Intel Atom D525
1.80GHz / 1MB cache / 2 cores / 4 GB RAM
54.9 32.7 41.1 61.7 53.1 48.7
Intel Core 2 Duo T6400
2.00GHz / 2MB cache / 2 cores / 3 GB RAM
54.9 79.4 87.1 108.2 105.4 87.0
Intel Atom E3845
1.91GHz / 2MB cache / 4 cores / 4 GB RAM
100.0 100.0 100.0 100.0 100.0 100.0
AMD FX-4100 Quad-Core
3.60 GHz / 8MB cache / 4 cores/ 8 GB RAM
112.3 213.4 164.8 218.7 174.6 176.7
AMD Athlon II X2 270
3.40 GHz / 2MB cache / 2 cores/ 8 GB RAM
311.6 136.8 171.6 210.0 212.0 208.4
Intel Core-i7 3612QM
2.10GHz / 6MB cache / 4 cores/ 4 GB RAM
427.8 534.6 303.6 295.9 352.6 382.9
Intel Core-i7 2600K
3.40GHz / 8MB cache / 4 cores/ 8 GB RAM
507.6 593.4 346.8 345.9 393.1 437.4
Intel Core-i5 3470
3.20GHz / 6MB cache / 4 cores/ 16 GB RAM
545.3 628.1 355.1 324.7 403.6 455.0
Intel Core-i5 3570K
3.40GHz / 6MB cache / 4 cores/ 8 GB RAM
554.6 645.5 359.0 360.4 416.5 467.2
Intel Core-i5 4460
3.20GHz / 6MB cache / 4 cores/ 16 GB RAM
611.6 667.6 366.6 356.9 421.3 484.8
Intel Core-i7 4800MQ
2.70GHz / 6MB cache / 4 cores/ 12 GB RAM
628.3 678.7 380.5 378.9 420.8 483.5
Intel Core-i7 6700HQ
2.60GHz / 6MB cache / 4 cores/ 16 GB RAM
641.8 710.0 365.9 366.8 416.3 500.2
Intel Core-i7 4800MQ
2.70GHz / 6MB cache / 4 cores/ 16 GB RAM
640.2 699.1 380.9 378.8 412.6 502.3
Intel Core-i5 6500
3.20GHz / 6MB cache / 4 cores/ 16 GB RAM
663.7 794.0 395.7 390.2 458.1 540.3
Intel Core-i5 7500
3.40GHz / 6MB cache / 4 cores/ 16 GB RAM
684.3 830.1 422.0 406.8 492.6 567.1
Intel Core-i7 4790K
4.00GHz / 8MB cache / 4 cores/ 16 GB RAM
798.2 887.5 474.7 461.1 550.1 634.3
Intel Core-i7 8700K
3.70GHz / 12MB cache / 6 cores/ 16 GB RAM
862.5 1364.7 587.8 491.3 594.3 780.1

Higher value means better performance.
The test measures execution time for constant number of operations. Results are normalized.