This page uses cookies. For details and possible settings refer to our Privacy Policy.
Continuing to use this page means accepting the processing of cookie files.

Accept (hide info)
POL ENG GER 中文(繁體)

Performance

The filters of Adaptive Vision software are highly optimized for modern multi-core processors with SSE2 technology. The table below shows results of a vision software performance benchmark.

Vision Softwares Benchmark

Filter Adaptive Vision Studio 4.11.3 Another product OpenCV 3.4.1
Image negation 0.097 ms 0.096 ms 0.104 ms
Add two images (pixel by pixel) 0.101 ms 0.131 ms 0.091 ms
Image difference (pixel by pixel) 0.090 ms 0.125 ms 0.085 ms
RGB to HSV conversion (3xUINT8) 1.696 ms 2.679 ms 1.829 ms
Gauss filter 3x3 0.101 ms 0.542 ms 0.208 ms
Gauss filter 5x5 0.110 ms 0.546 ms 0.374 ms
Gauss filter 21x21 (std-dev: 4.3) 1.730 ms 4.003 ms 6.442 ms
Mean filter 21x21 0.318 ms 0.301 ms 1.110 ms
Image erosion 3x3 0.093 ms 0.201 ms 0.104 ms
Image erosion 5x5 0.095 ms 0.209 ms 0.146 ms
Sobel gradient magnitude (sum) 0.100 ms 0.106 ms
Sobel gradient magnitude (hypot) 0.104 ms 0.114 ms
Threshold to region 0.049 ms 0.046 ms
Splitting region into blobs 0.081 ms 0.079 ms
Bilinear image resize 0.417 ms 0.537 ms 0.277 ms

The above results correspond to 1 MP, UINT8 image processed on an Intel Core i5 - 3.2 GHz (4 cores) machine. To assure consistent cache conditions big images were used and the results were normalized.

SEE & Multi-Core Optimization

Filters of Adaptive Vision Studio are optimized for SSE technology and for multi-core processors. Speed-up factors that can be achieved with these techniques are however highly dependent on the particular operator. Simple pixel-by-pixel transforms after SSE-based optimizations already reach memory bandwidth limits. On the other hand, more complex filters such as Gauss smoothing can achieve even 10 times lower execution times than with C++ optimizations only.


CPU Benchmark

The below table demonstrates how well different processors perform when executing our software tools (higher is better). You can use it as a reference when choosing hardware for your application.

Benchmark category Overall result
Device description Executor Engine Image processing Image analysis Region processing Applications
Intel Atom D525
1.80GHz / 1MB cache / 2 cores / 4 GB RAM
54.9 32.7 41.1 61.7 53.1 48.7
Intel Core 2 Duo T6400
2.00GHz / 2MB cache / 2 cores / 3 GB RAM
54.9 79.4 87.1 108.2 105.4 87.0
Intel Atom E3845
1.91GHz / 2MB cache / 4 cores / 4 GB RAM
100.0 100.0 100.0 100.0 100.0 100.0
AMD FX-4100 Quad-Core
3.60 GHz / 8MB cache / 4 cores/ 8 GB RAM
112.3 213.4 164.8 218.7 174.6 176.7
AMD Athlon II X2 270
3.40 GHz / 2MB cache / 2 cores/ 8 GB RAM
311.6 136.8 171.6 210.0 212.0 208.4
Intel Core-i7 3612QM
2.10GHz / 6MB cache / 4 cores/ 4 GB RAM
427.8 534.6 303.6 295.9 352.6 382.9
Intel Core-i7 2600K
3.40GHz / 8MB cache / 4 cores/ 8 GB RAM
507.6 593.4 346.8 345.9 393.1 437.4
Intel Core-i5 3470
3.20GHz / 6MB cache / 4 cores/ 16 GB RAM
545.3 628.1 355.1 324.7 403.6 455.0
Intel Core-i5 3570K
3.40GHz / 6MB cache / 4 cores/ 8 GB RAM
554.6 645.5 359.0 360.4 416.5 467.2
Intel Core-i5 4460
3.20GHz / 6MB cache / 4 cores/ 16 GB RAM
611.6 667.6 366.6 356.9 421.3 484.8
Intel Core-i7 4800MQ
2.70GHz / 6MB cache / 4 cores/ 12 GB RAM
628.3 678.7 380.5 378.9 420.8 483.5
Intel Core-i7 6700HQ
2.60GHz / 6MB cache / 4 cores/ 16 GB RAM
641.8 710.0 365.9 366.8 416.3 500.2
Intel Core-i7 4800MQ
2.70GHz / 6MB cache / 4 cores/ 16 GB RAM
640.2 699.1 380.9 378.8 412.6 502.3
Intel Core-i5 6500
3.20GHz / 6MB cache / 4 cores/ 16 GB RAM
663.7 794.0 395.7 390.2 458.1 540.3
Intel Core-i5 7500
3.40GHz / 6MB cache / 4 cores/ 16 GB RAM
684.3 830.1 422.0 406.8 492.6 567.1
Intel Core-i7 4790K
4.00GHz / 8MB cache / 4 cores/ 16 GB RAM
798.2 887.5 474.7 461.1 550.1 634.3
Intel Core-i7 8700K
3.70GHz / 12MB cache / 6 cores/ 16 GB RAM
862.5 1364.7 587.8 491.3 594.3 780.1

Higher value means better performance.
The test measures execution time for constant number of operations. Results are normalized.